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Physics-based character animation has seen significant advances in recent years with the adoption of Deep
Reinforcement Learning (DRL). However, DRL-based learning methods are usually computationally expensive
and their performance crucially depends on the choice of hyperparameters. Tuning hyperparameters for these
methods often requires repetitive training of control policies, which is even more computationally prohibitive.
In this work, we propose a novel Curriculum-based Multi-Fidelity Bayesian Optimization framework (CMFBO)
for efficient hyperparameter optimization of DRL-based character control systems. Using curriculum-based
task difficulty as fidelity criterion, our method improves searching efficiency by gradually pruning search
space through evaluation on easier motor skill tasks. We evaluate our method on two physics-based character
control tasks: character morphology optimization and hyperparameter tuning of DeepMimic. Our algorithm
significantly outperforms state-of-the-art hyperparameter optimization methods applicable for physics-based
character animation. In particular, we show that hyperparameters optimized through our algorithm result in
at least 5x efficiency gain comparing to author-released settings in DeepMimic.
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1 INTRODUCTION
Physics-based character animation has made significant progresses recently, especially with the
application of Deep Reinforcement Learning (DRL) algorithms [Bergamin et al. 2019; Park et al.
2019; Peng et al. 2018a; Won et al. 2020]. For example, DeepMimic-style neural network controllers
are able to synthesize diverse and robust high-quality motor skills [Peng et al. 2018a]. Despite the
demonstrated impressive performance, it is usually quite hard for a novice graduate student to
reproduce the performance of such systems, without knowing the exact value of each hyperparam-
eter involved. Therefore, more and more authors have released their code for better reproducibility.
However, a single change of one hyperparameter may totally ruin the performance, and sometimes
even the convergence, of such learning algorithms. How the original authors found the working set
of hyperparameters remains as an art and mystery. Improving upon prior work, even with released
code, thus remains challenging, as any modification to the training algorithm may require a new
set of hyperparameters to work well.

Automatic hyperparameter optimization is thus in great need. Hyperparameters, in the narrow
sense, refer to values that are used to control the learning process in machine learning algorithms.
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In contrast, regular parameters are derived or optimized during the training process. In this paper,
we refer to all parameters external to a learning algorithm that need to be determined prior to the
learning as hyperparameters. For example, morphology parameters of a virtual character in motor
learning are also hyperparameters. To date, it is a common practice of the field to manually test and
select hyperparameters for various character control algorithms. Behind the scenes, maybe simple
grid search or random search algorithms are used for semi-automatically choosing hyperparameters.
However, in physics-based character control, better search schemes are needed to handle two key
challenges: First, the evaluation of new hyperparameters typically involves re-learning of the
controllers from scratch, which is usually an expensive black-box function. Second, the number of
hyperparameters can also be large and results in the curse of dimensionality.
Bayesian optimization (BO) is a promising candidate for hyperparameter optimizations for

physics-based character animation problems. BO is a sequential design strategy for global opti-
mization of expensive-to-evaluate black-box functions that do not assume any functional forms
[Jones et al. 1998; Kandasamy et al. 2017; Srinivas et al. 2010]. Traditional BO only evaluates the
expensive black-box objective functions themselves [Jones et al. 1998; Srinivas et al. 2010]. We refer
to such algorithms as Single Fidelity BO (SFBO) in this paper. For many physics-based character
animation applications, however, SFBO is inefficient due to the extremely high cost of function
evaluations that rely on physics-based character simulation and motor learning. Multi-fidelity BO
(MFBO) accelerates the optimization by using cheap approximations of the objective functions in
early optimization stages [Kandasamy et al. 2017; Klein et al. 2017; Song et al. 2019; Swersky et al.
2013]. Such MFBO algorithms typically employ fewer training iterations on smaller datasets as
low-fidelity cheap approximations to the original objective functions, and work well for supervised
learning tasks.

For physics-based character animation, however, existing MFBO methods do not work well. We
analyze in section 3.2 and 3.3 that training iterations are not a good fidelity criterion for physics-
based character control, and multi-fidelity objective does not have desired properties across fidelity
dimension required by existing MFBO methods like BOCA [Kandasamy et al. 2017] and FABOLAS
[Klein et al. 2017]. Therefore, we propose a novel algorithm CMFBO: Curriculum-based Multi-
Fidelity Bayesian Optimization for efficient hyperparameter optimization of DRL-based character
control systems. CMFBO employs easier motor skill learning tasks as low-fidelity optimization
objectives. Task difficulties are organized and scheduled by a curriculum [Bengio et al. 2009]. For
example, a curriculum that gradually increases the training episode length can help the character
perform longer and longer skills [Kostrikov 2018; Peng et al. 2018a]; and a curriculum that gradually
reduces the hand-of-God assistance forces can help the character learn to locomote [Yu et al. 2018].
Easier tasks are faster to evaluate enabling efficient search space pruning. Control policies learned at
easier tasks could be transferred to harder tasks to further reduce evaluation cost. Hyperparameters
optimized by CMFBO may significantly outperform those tuned by experts and optimized by
state-of-the-art methods. For instance, at least 5x efficiency gain is obtained with our optimized
hyperparameters on DeepMimic [Peng et al. 2018a], compared to author-released settings.

To summarize, we

• introduce Bayesian Optimization into physics-based character animation for principled
hyperparameter optimization;
• propose an efficient algorithm CMFBO for hyperparameter optimization of challenging motor
learning tasks based on deep reinforcement learning;
• systematically compare and evaluate SFBO, state-of-the-art MFBO, and CMFBO on two
physics-based character animation problems: morphology optimization, and automatic tuning
of DeepMimic training hyperparameters.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.



Efficient Hyperparameter Optimization for
Physics-based Character Animation 3

2 RELATEDWORK
2.1 Physics-based Character Animation
Synthesizing natural human motions is a long-standing challenge in computer graphics. We classify
existing methods roughly into three categories. First, manually designed controllers, which usually
employ finite state machines (FSMs) and heuristic feedback rules. Human insights and domain
knowledge are usually involved to design and tune the parameters [Coros et al. 2010, 2011; De Lasa
et al. 2010; Felis andMombaur 2016; Geijtenbeek et al. 2013; Hodgins et al. 1995; Jain et al. 2009;Wang
et al. 2009, 2012; Yin et al. 2007]. Second, model-based trajectory optimization, where equations of
motions are enforced as optimization constraints. Designing of an often sophisticated optimization
objective function is generally required along with weights tuning for each term [Hämäläinen et al.
2015; Mordatch et al. 2012; Tassa et al. 2012; Wampler et al. 2014]. Recently, model-free DRL-based
control methods have been demonstrated to reproduce high-quality complex and robust motor
skills [Bergamin et al. 2019; Heess et al. 2017; Lillicrap et al. 2016; Luo et al. 2020; Merel et al. 2020;
Park et al. 2019; Peng et al. 2018a, 2015, 2016, 2017, 2018b; Won et al. 2020; Won and Lee 2019;
Yu et al. 2018]. DRL-based methods require designing and tuning of a reward function, as well as
related hyperparameters of DRL algorithms themselves. In this paper, We focus on hyperparameter
optimization for recent DRL-based methods, although our framework is general enough to be
applicable to other categories of methods as well.

2.2 Hyperparameter Optimization
2.2.1 Parameter Optimization in Computer Graphics. Parameter tuning and optimization is a
common task in computer graphics, such as weights for SIMBICON-type feedback controllers
[Wang et al. 2009; Yin et al. 2007]. Multiple derivative-free optimization algorithms, such as
Covariance Matrix Adaptation (CMA) [Hansen 2006; Wang et al. 2009] and Bayesian optimization,
have been used to optimize such parameters where the objective functions are black-box functions
and no derivative information is available. Some methods further combine BO with user evaluations
to achieve desired visual effects, such as bidirectional reflectance distribution function (BRDF)
design [Brochu et al. 2007] and smoke animation tuning [Brochu et al. 2010]. More recently, BO
is applied to low-dimensional subproblems of various graphics applications [Koyama et al. 2020,
2017], such as color enhancement, and human body geometric modelling [Loper et al. 2015].
We also adopt a Bayesian optimization framework, but for hyperparameter optimization. To

the best of our knowledge, the only previous work on hyperparameter optimization in graphics is
[Tseng et al. 2019], where parameters of image processing hardware, such as threshold values in
the denoising module, are optimized with a non-Bayesian approach. Hereafter we will focus on
hyperparameter optimization literature from machine learning and robotics.

2.2.2 Hyperparameter Optimization for DRL. State-of-the-art motor learning methods are usually
based on DRL. For example, DeepMimic [Peng et al. 2018a] can produce robust and diverse high-
quality controllers by imitating motion captured reference motions. However, its performance
crucially depends on the choice of its hyperparameters. Minor changes to one single hyperparameter
may result in slow convergence or even training failure. But so far, no publications on physics-based
character animation have explicitly discussed the issue of hyperparameter tuning or optimization. In
machine learning, hyperparameter optimization for simple benchmark systems, such as a cartpole
model in OpenAI gym [Brockman et al. 2016], with standard DRL algorithms, such as A2C [Mnih
et al. 2016], has been investigated [Nguyen and Osborne 2019; Nguyen et al. 2020]. However, in
physics-based character animation, we study the control of high dimensional character models,
which is a much more expensive and challenging task requiring specialized DRL algorithms such
as DeepMimic to achieve natural-looking skills.
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2.2.3 Morphology Design. Morphology design and optimization is a problem in both computer
animation and robotics [Agrawal et al. 2014; Bongard 2011; Geijtenbeek et al. 2013; Ha et al. 2017;
Hu et al. 2020; Huang et al. 2020; Liao et al. 2019; Lipson and Pollack 2000; Ma et al. 2021; Park
and Asada 1994; Paul and Bongard 2001; Pil and Asada 1996; Sims 1994; Spielberg et al. 2017;
Villarreal-Cervantes et al. 2012; Wang et al. 2018; Won and Lee 2019]. Traditional model-based
methods require accurate dynamic models, and only work for specific types of control algorithms
such as trajectory optimization [Ha et al. 2017; Spielberg et al. 2017]. Some recent morphology
design methods work with DRL-based control [Ha 2019; Luck et al. 2020; Schaff et al. 2019]. These
methods guide optimization in morphology space based on gradient estimation [Ha 2019; Schaff
et al. 2019], or performance prediction of unseen morphology through a learned value network
[Luck et al. 2020]. We note that none of these methods address the issue of expensive evaluation per
design. With effective search space pruning through cheap evaluation on easier tasks, our method
significantly outperforms them in terms of sample efficiency.

2.3 Bayesian Optimization
Bayesian Optimization is a class of methods for expensive black-box function optimization. Since no
gradient information is available, functions are optimized purely through evaluations. A Bayesian
statistical model, usually a Gaussian Process [Rasmussen 2003], is maintained to estimate value of
the objective function along with the uncertainty. An acquisition function is then repeatedly applied
to query and evaluate the most promising and informative region based on existing estimation.
With the advancement of deep learning, there is a great appeal for automatic hyperparameter

optimization of deep learning models. BO demonstrates its potential on such tasks for its promising
sample efficiency [Nguyen and Osborne 2019; Snoek et al. 2012, 2015]. Recently many MFBO
methods are proposed to further improve efficiency of hyperparameter optimization for supervised
learning tasks [Kandasamy et al. 2016, 2017; Klein et al. 2017; Song et al. 2019; Swersky et al. 2013,
2014; Takeno et al. 2019] mainly by utilizing cheap approximations of the objective, such as neural
network validation loss on smaller datasets with fewer training iterations.

However, most of these methods cannot scale well to motion control tasks. Due to stochasticity
and complexity of DRL training, existing fidelity criterion such as the number of training iterations
mislead the optimization a lot. Low-fidelity evaluations through early stopping usually provide
false estimation on the relative performance of hyperparameters. Besides the fidelity criterion
issue, existing MFBO acquisition functions have strong assumptions on the shape of multi-fidelity
objective function along the fidelity dimension. For example, BOCA [Kandasamy et al. 2017]
assumes a flat fidelity dimension while FABOLAS [Klein et al. 2017] assumes it to satisfy quadratic
form. These simplified assumptions are no longer valid in the complex DRL settings. We detail
the analysis and how we resolve the problems with our proposed curriculum-based fidelity and
progressive acquisition function in section 3.2 and 3.3.

2.4 Curriculum Learning
Curriculum learning (CL) is a learning method where task difficulty gradually increases during
training[Bengio et al. 2009]. Easier tasks are cheaper to accomplish and serve as good initial
solutions for more difficult tasks. CL has been widely used in character animation to improve the
performance and efficiency of motor learning tasks [Karpathy and Van De Panne 2012; Van de
Panne and Lamouret 1995; Wu and Popović 2010; Yin et al. 2008]. [Kostrikov 2018; Peng et al. 2018a]
employ a time-based curriculum with increasing episode length to help the character perform
longer and longer skills. [Yu et al. 2018] applies hand-of-God assistance forces at robot torso and
decreases the force gradually during training to encourage the emergence of natural gaits. More

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 1, Article . Publication date: May 2021.



Efficient Hyperparameter Optimization for
Physics-based Character Animation 5

Easier task
Se

ar
ch

 s
pa

ce
Harder task Original task

Increasing accuracy and cost

Reinforcement
Learning

Reinforcement
Learning

Reinforcement
Learning

Select
parameters

Performance

Policy
Transfer

Policy
Transfer

Fig. 1. Conceptual illustration of CMFBO

Fig. 2. An example of applying BO to a one-dimensional function. Green dotted curve represents the unknown
black-box function. Red points represent the queried points. Red curve along with the rosy shaded region
indicate the predicted mean and 95% confidence interval. Blue curve is the acquisition function (It is scaled
for the convenience of visualization). Blue downside arrows indicate the maximum of the acquisition function
which is the point to be queried next.

recently, [Xie et al. 2020] uses CL to demonstrate successful training of stepping-stone locomotion
controllers.

3 METHOD
We formulate hyperparameter optimization in a physics-based animation system as a black-box
function optimization problem

argmax
𝑥 ∈A

𝑓 (𝑥) (1)

where A is the hyperparameter space. 𝑓 (·) : A → R is the objective function, i.e. performance of
control policy given hyperparameter 𝑥 . The evaluation of 𝑓 (·) involves DRL training, thus is costly,
noisy and cannot be computed in closed forms.
Figure 1 illustrates a conceptual overview of our approach based on MFBO. We first define our

multi-fidelity objective function based on a curriculum (section 3.2). During optimization, we use
lower-fidelity cheap approximations to locate the promising region of hyperparameters through
the proposed progressive acquisition function (section 3.3). Policies learned at easier tasks are
transferred to difficult tasks for more efficient evaluation (section 3.4).
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3.1 Background
In this section we briefly review the technique of general Bayesian optimization involved in
our approach. Given a black-box function 𝑓 (𝑥), BO finds its maxima through repeated function
evaluations. Since evaluating 𝑓 (𝑥) could be expensive, BO is designed to minimize the number
of function evaluations by querying the most promising and informative points. Given a set of
current observations 𝐷𝑡 = {(𝑥𝑖 , 𝑦𝑖 )}𝑡𝑖=1, where 𝑦𝑖 is a noisy measurement of 𝑓 (𝑥𝑖 ), the acquisition
function 𝑎(𝑥, 𝐷𝑡 ) : A → R quantifies the utility of an arbitrary point. Maximizing the acquisition
function will give us the point most worth trying next.

The acquisition function is designed for finding candidate points with both large values and rich
information. Querying a point close to existing ones in 𝐷𝑡 is less informative. Gaussian Process
Upper Confidence Bound (GP-UCB) [Srinivas et al. 2010] is a popular acquisition function defined
as:

𝑎(𝑥, 𝐷𝑡 ) = 𝜇𝑡 (𝑥) + 𝛽
1
2𝜎𝑡 (𝑥) (2)

where 𝜇𝑡 (𝑥) and 𝜎𝑡 (𝑥) are approximated posterior mean value and standard deviation of 𝑓 (𝑥)
respectively. 𝜇𝑡 (·) favors candidates which are likely to have large values. 𝜎𝑡 (·) encourages querying
informative points with high uncertainty. 𝛽 enables a trade-off between exploitation and exploration.
Closed-form estimations for 𝜇𝑡 (·) and 𝜎𝑡 (·) are available through a Gaussian Process (GP)

[Rasmussen 2003] surrogate model of the objective function trained on 𝐷𝑡 . A GP contains a prior
mean function𝑚(𝑥) and a kernel function 𝑘 (𝑥, 𝑥 ′).𝑚(𝑥) encodes our prior belief of the objective
function value. Kernel function 𝑘 (𝑥, 𝑥 ′) measures correlations between 𝑓 (𝑥) and 𝑓 (𝑥 ′). Given𝑚(·),
𝑘 (·, ·) and existing observations 𝐷𝑡 , 𝜇𝑡 and 𝜎𝑡 could be computed as:

𝜇𝑡 (𝑥) = 𝑘 (𝑥, 𝑋 ) (𝐾 + 𝜂2𝐼 )−1𝑌
𝜎2𝑡 (𝑥) = 𝑘 (𝑥, 𝑥) + 𝜂2 − 𝑘 (𝑥,𝑋 ) (𝐾 + 𝜂2𝐼 )−1𝑘 (𝑋, 𝑥)

(3)

where𝑌 ∈ R𝑡 , 𝑌𝑖 = 𝑦𝑖 ;𝑋 ∈ R𝑡×𝑑 , 𝑋𝑖 = 𝑥𝑖 ;𝐾 ∈ R𝑡×𝑡 , 𝐾𝑖, 𝑗 = 𝑘 (𝑥𝑖 , 𝑥 𝑗 );𝑘 (𝑥, 𝑋 ) = (𝑘 (𝑥, 𝑥1), 𝑘 (𝑥, 𝑥2), ...𝑘 (𝑥, 𝑥𝑡 ));
𝜂 is the standard deviation of the observation noise.

Many choices of kernel functions exist, including Square Exponential kernel and Matern kernel.
In this work we adopt the Square Exponential kernel defined as:

𝑘𝑆𝐸 (𝑥, 𝑥 ′) = 𝜎2𝑓 𝑒𝑥𝑝 (−
1
2
(𝑥 − 𝑥 ′)𝑇Λ−1 (𝑥 − 𝑥 ′)) (4)

Λ = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, ...𝜆𝑡), where 𝜆𝑖 is the length scale of the 𝑖-th component of inputs. 𝑓 (·) is flat across
the 𝑖-th component of the input when 𝜆𝑖 is large.
Figure 2 shows a visual illustration of applying BO to a one-dimensional function. We refer

interested readers to the second chapter of [Rasmussen 2003] for more in-depth reviews.

3.2 Curriculum-based Multi-Fidelity Functions
Themain challenge of hyperparameter optimization for physics-based character control tasks comes
from the fact that performance evaluation function 𝑓 (𝑥) given hyperparameter 𝑥 is highly compu-
tationally expensive. Even if BO is designed for black-box function optimization with minimum
samples, the entire optimization procedure still requires a prohibitive amount of computational
resources.

We propose to solve this problem with a multi-fidelity approach on top of Bayesian optimization,
where low-fidelity cheap evaluations are utilized for efficient search space pruning. This procedure
crucially depends on an accurate fidelity criterion being able to distinguish good hyperparameters
from bad ones with lower-fidelity approximations. To the best of our knowledge, number of training
iterations is the only fidelity criterion from existing literature applicable to our problem. Though
number of training iterations shows its effectiveness for supervised learning tasks [Kandasamy
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(a) (b)

Fig. 3. (a): Learning curves of locomotion controllers with different morphology designs. (b): Performance of
ten morphology designs on two difficulty levels. Task difficulty is determined by the strength of hand-of-God
assistance forces parameterized by proportional gain kp of the assistance stable PD controller.

et al. 2017; Klein et al. 2017; Snoek et al. 2012], performance estimated through early stopping
can be deceptive for challenging DRL character control tasks. Early stages for DRL training can
be noisy [Fujimoto et al. 2018; Haarnoja et al. 2018], and good hyperparameters do not always
guarantee quick convergence [Nguyen et al. 2020]. We illustrate this problem in the context of
finding optimal morphology hyperparameters for character locomotion. We show the performance
of three morphology designs in figure 3a, where some good morphology designs show worse
performance in early training stages.

To mitigate this problem, we propose the use of curriculum-based task difficulty as a new fidelity
criterion tailored to physics-based character control settings. Task difficulty can be parameterized
by a single continuous scalar variable 𝑧. Multi-fidelity objective function is therefore defined to be
𝑓 (𝑥, 𝑧). Note that 𝑓 (𝑥, 𝑧𝑚𝑎𝑥 ) is the original objective function. 𝑓 (𝑥, 𝑧) is more accurate and requires
more computational resources as 𝑧 gets closer to 𝑧𝑚𝑎𝑥 . Similar to single fidelity BO, we use GP to
model multi-fidelity function 𝑓 (𝑥, 𝑧). The kernel function generalizes to:

𝑘 ((𝑥, 𝑧), (𝑥 ′, 𝑧 ′)) = 𝑘𝑆𝐸 (𝑥, 𝑥 ′) 𝑘𝑆𝐸 (𝑧, 𝑧 ′) (5)

The factorized kernel adopts the multiplication form based on the fact that: if 𝑥 and 𝑧 are close to
𝑥 ′ and 𝑧 ′ respectively, 𝑓 (𝑥, 𝑧) correlates strongly with 𝑓 (𝑥 ′, 𝑧 ′).

We validate the effectiveness of using task difficulty as fidelity criterion through an example
shown in figure 3b, where ten morphology hyperparameters are evaluated on two different levels of
task difficulty parameterized by the strength of virtual hand-of-God assistance forces. With fidelity
criterion defined with task difficulty, relative performance of hyperparameters across different
fidelity levels are well preserved. We detail our specific curriculum settings for different tasks in
section 4.

3.3 Progressive Acquisition Function
Given a properly designed multi-fidelity objective function, an effective acquisition function is
still in need to achieve efficient hyperparameter optimization in physics-based character control
tasks. In each iteration, multi-fidelity acquisition function 𝑎((𝑥, 𝑧), 𝐷𝑡 ) determines which point 𝑥
in hyperparameter space is going to be evaluated next, and which fidelity level 𝑧 the evaluation is
going to be performed on. An effective multi-fidelity acquisition function is expected to generate
queries such that the original objective can be optimized with much fewer samples by inferring
optimality information through low-fidelity cheap approximations.
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Existing MFBO methods like BOCA [Kandasamy et al. 2017] and FABOLAS [Klein et al. 2017]
require a well-fitted surrogate model for accurate estimation of original objective value from lower-
fidelity approximations. Mathematical assumptions on the shape of fidelity dimension are usually
necessary to achieve this. For example, BOCA assumes the fidelity dimension is flat while FABOLAS
assumes it to satisfy quadratic form. However, due to stochasticity and complexity of DRL training,
performance difference of hyperparameters on different fidelity levels can be unpredictable, as
shown in figure 3b. A GP trained on such DRL performance data will learn a small length scale,
which degrades the accuracy of high fidelity value prediction through a reasonable number of
lower-fidelity samples.

We attempt this problem with a different approach. Instead of relying on low fidelity samples to
infer high-fidelity function value, we propose to use them simply for locating promising regions. The
motivation is based on the key observation that though performance difference of hyperparameters
on different fidelity levels can be unpredictable, optimal regions of objective function on different
fidelity levels highly overlap, as shown in figure 3b. Search space for a high-fidelity objective can
therefore be greatly pruned by simply exploring around optimal regions estimated at lower fidelity
levels.

Specifically, we propose a novel progressive acquisition function, which progressively conducts
optimization from low fidelity to high fidelity levels. At iteration 𝑡 , target fidelity 𝑧𝑡 is chosen to
be the least expensive while most informative one until we reach the highest. This is performed
through an iterative procedure. Initializing 𝑧𝑡 with 𝑧𝑚𝑖𝑛 , we repeatedly increase 𝑧𝑡 by a small step
𝛼 and re-compute best candidate point 𝑥𝑡 for new 𝑧𝑡 . The procedure terminates when our model
shows insufficient knowledge at (𝑥𝑡 , 𝑧𝑡 ) with uncertainty 𝜎𝑡 (𝑥𝑡 , 𝑧𝑡 ) exceeding threshold 𝜖 . In our
implementation, we choose 𝛼 to be equal to the length scale of the fidelity kernel 𝑙𝑧 , since function
values from GP surrogate model strongly correlate along fidelity dimension within 𝑙𝑧 proximity.
𝑧𝑡 should be increased only when we have sufficient knowledge at (𝑥𝑡 , 𝑧𝑡 ). 𝜖 can therefore be
set conservatively to a small value negligible comparing to the objective function value range in
promising regions. In our experiments we set 𝜖 to 0.02.
Given a specified fidelity level 𝑧𝑡 , the best candidate point 𝑥𝑡 is chosen by optimizing a variant

of the upper confidence bound (UCB) utility function defined as:

𝑎((𝑥, 𝑧𝑡 ), 𝐷𝑡 ) = 𝜇𝑡 (𝑥, 𝑧𝑡 ) + 𝛽
1
2𝜎𝑡 (𝑥, 𝑧𝑚𝑎𝑥 ) (6)

where 𝜇𝑡 (𝑥, 𝑧𝑡 ) favors high-performing regions and 𝜎𝑡 (𝑥, 𝑧𝑚𝑎𝑥 ) favors uncertain regions of the
original objective. We set 𝛽 to 0.2𝑑 log(2𝑡) following suggestions from [Kandasamy et al. 2017;
Srinivas et al. 2010], where𝑑 is the dimension of the hyperparameters and 𝑡 is the iteration index. The
optimization starts from 𝑧𝑡 = 𝑧𝑚𝑖𝑛 to find initial promising candidates across the hyperparameter
space. When 𝑧𝑡 > 𝑧𝑚𝑖𝑛 , optimization of 𝑎((𝑥, 𝑧𝑡 ), 𝐷𝑡 ) is restricted to be close to known high-utility
regions obtained from lower-fidelity levels, which enables efficient search space pruning. This
can be achieved by simply applying a gradient-based local optimization method like L-BFGS [Liu
and Nocedal 1989] on 𝑎((𝑥, 𝑧𝑡 ), 𝐷𝑡 ), with solutions of argmax𝑎(·) at lower-fidelity levels serving
as initial guesses. The optimization of the acquisition function does not have to be perfect, since
we only care about promising points instead of optimal ones. Our algorithm works well with our
default choices for 𝛼, 𝛽 and 𝜖 without manual tuning. We summarize this procedure in algorithm 1
for ease of re-implementation.

3.4 Policy Transfer
Progressive acquisition function enables the use of transfer learning to speed up evaluation on
most (𝑥𝑡 , 𝑧𝑡 ) pairs where 𝑧𝑡 > 𝑧𝑚𝑖𝑛 . This comes from the fact that progressive acquisition function
queries 𝑧𝑡 progressively, and only looks for 𝑥𝑡 within a common promising region. Therefore, as
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long as 𝑧𝑡 > 𝑧𝑚𝑖𝑛 , a previously queried pair (𝑥𝑖 , 𝑧𝑖 ) with 𝑖 < 𝑡 usually (if not always) exists such
that (𝑥𝑡 , 𝑧𝑡 ) is close to (𝑥𝑖 , 𝑧𝑖 ). Pre-trained policy on (𝑥𝑖 , 𝑧𝑖 ) can therefore serve as a warm start for
training on (𝑥𝑡 , 𝑧𝑡 ).
In practice, (𝑥𝑖 , 𝑧𝑖 ) can be acquired by traversing all previously visited (𝑥, 𝑧) pairs to find the

closest one to (𝑥𝑡 , 𝑧𝑡 ) measured by kernel function correlation 𝑘 ((𝑥𝑡 , 𝑧𝑡 ), (𝑥𝑖 , 𝑧𝑖 )). Theoretically,
negative transfer may happen but we do not observe any in our experiments. We show in our
experiments that the use of transfer learning saves a significant number of samples during CMFBO
optimization.

Algorithm 2 summarizes the pipeline of CMFBO.

Algorithm 1: Progressive Acquisition Function
Input: Iteration index 𝑡 , fidelity kernel length scale 𝑙𝑧 , observation dataset 𝐷𝑡 and

uncertainty threshold 𝜖
Output: Best candidate pair (𝑥𝑡 , 𝑧𝑡 )
𝑧𝑡 ← 𝑧𝑚𝑖𝑛

𝑥𝑡 ← argmax
𝑥

𝑎((𝑥, 𝑧𝑡 ), 𝐷𝑡 ) using L-BFGS with multiple random start points

while 𝑧𝑡 < 𝑧𝑚𝑎𝑥 and 𝜎𝑡 (𝑥𝑡 , 𝑧𝑡 ) < 𝜖 do
1.𝑧𝑡 ← min(𝑧𝑡 + 𝑙𝑧, 𝑧𝑚𝑎𝑥 ) ;
2.𝑥𝑡 ← argmax

𝑥

𝑎((𝑥, 𝑧𝑡 ), 𝐷𝑡 ) using L-BFGS with 𝑥𝑡 as an initial solution ;

Return (𝑥𝑡 , 𝑧𝑡 )

Algorithm 2: Curriculum-based MFBO
Input: Multi-fidelity function 𝑓 (𝑥, 𝑧) and the maximum allowed computational cost 𝑁𝑡𝑜𝑡𝑎𝑙

Output: Observed function maximum 𝑦★ and corresponding 𝑥★
𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 0, 𝐷0 ← ∅, the Gaussian Process is initialized randomly.
for 𝑡 = 1, 2, ... do

1.Choose (𝑥𝑡 , 𝑧𝑡 ) by progressive acquisition function optimization (see algorithm 1);
2.Evaluate 𝑓 (𝑥𝑡 , 𝑧𝑡 ) to get performance 𝑦𝑡 and corresponding computational cost 𝑁𝑡 ;
3.𝐷𝑡 ← 𝐷𝑡−1 ∪ ((𝑥𝑡 , 𝑧𝑡 ), 𝑦𝑡 ) and update parameters of the Gaussian Process using 𝐷𝑡 ;
4.𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑁𝑡 ;
5.if 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≥ 𝑁𝑡𝑜𝑡𝑎𝑙 then

break;
𝑡★← argmax

𝑡

𝑦𝑡 , 𝑦★← 𝑦𝑡★ , 𝑥★← 𝑥𝑡★ ;

Return 𝑦★ and 𝑥★

4 EXPERIMENTS
We validate CMFBO on two physics-based character control tasks: morphology optimization and
hyperparameter optimization of DeepMimic. For each task, we discuss its specific curriculum
setting and objective function, followed by experiment results, comparisons and ablation studies.
In our implementation, we use Gaussian Process from GPy[GPy 2012] and L-BFGS [Liu and

Nocedal 1989] from Scipy [Virtanen et al. 2020]. All physics simulation is performed on PyBul-
let[Coumans and Bai 2019]. We report the performance statistics on a desktop with i7-7800x CPU
(12 threads). Each experiment is run 3 times independently with different random seeds.
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4.1 Morphology Optimization
The locomotion capability of a creature is intimately coupled with its morphology. Elaborately
designed morphology of simulated characters encourages the emergence of natural locomotion
[Geijtenbeek et al. 2013]. In this experiment, we optimize character morphology for learning fast
and low-energy locomotion. Our simulated character has 15 torque-controlled revolute joints.
Morphology hyperparameter 𝑥 is defined to be a 12-dimensional vector that scales the length and
radius of character links within a limited range, as shown in table 1. Link mass is uniformly scaled
according to its volume. Sagittal symmetry is imposed on legs of the character.

4.1.1 Environment Setup. We designed a DRL-based character control environment tailored to fast
locomotion, based on humanoid environments in [Coumans and Bai 2019]. Character state is defined
to be orientation and linear velocities of the root link, along with angles and velocities for all joints.
Action is normalized joint torques. We adopt a reward function specialized for locomotion control
proposed in [Xie et al. 2020], except that task specific and velocity penalty terms are removed to
encourage faster locomotion. Readers can refer to [Xie et al. 2020] for more details of the reward
function. We further adopt the symmetry loss proposed in [Yu et al. 2018] to encourage symmetric
gaits.
We use a feed-forward policy network with three fully connected layers, each with 128 units

using tanh activation. The critic network shares the same architecture with the policy. Policy is
trained with Proximal Policy Optimization (PPO) [Schulman et al. 2017]. We set discount factor
𝛾 = 0.95 and 𝜆 = 0.95 for both 𝑇𝐷 (𝜆) and 𝐺𝐴𝐸 (𝜆) [Schulman et al. 2015]. Learning rates of both
policy and critic network are set to 3 × 10−4. In each training iteration, we sample 4096 state-action
tuples with 10 paralleled environments. Batch size for policy update is set to 256.

4.1.2 Curriculum and Multi-fidelity Objective. We construct our multi-fidelity function based on a
curriculum learning setting proposed in [Yu et al. 2018], where a stable proportional-derivative (SPD)
controller [Tan et al. 2011] is applied to the character root to provide hand-of-God balancing forces.
Task difficulty is parameterized by stiffness kp and damping kd coefficients of SPD controller. High
gain controllers make the task easier by providing large assistance forces. Given the normalized
task difficulty scalar 𝑧 ranging from 0 to 1, we set kp(𝑧) = 200 − 200𝑧. kd is set to be equal to
kp as proposed in [Yu et al. 2018]. The policy training starts at kp(0). kp gradually decreases to
kp(𝑧) during training according to the curriculum schedule in [Yu et al. 2018]. We refer readers
to section 4.2.2 in [Yu et al. 2018] for more details. The multi-fidelity objective is the normalized
return defined as:

𝑓 (𝑥, 𝑧) =
∑𝑇

𝑡=1 𝑟 (𝑠𝑡 , 𝑎𝑡 )
𝑇

(7)

where 𝑟 (𝑠𝑡 , 𝑎𝑡 ) is the reward function, and 𝑇 is the episode length fixed to 500 simulation steps
(8.25 seconds).

4.1.3 Comparison. We compare our method with several baseline and state-of-the-art algorithms:
a single fidelity BO with GP-UCB acquisition [Srinivas et al. 2010], a multi-fidelity method BOCA
[Kandasamy et al. 2017] and a recent DRL-based algorithm [Schaff et al. 2019] (Schaff et al. 2019)
specialized for morphology optimization. GP-UCB and [Schaff et al. 2019] can be directly applied to
the problem. For multi-fidelity method BOCA, We implement it following [Kandasamy et al. 2017]
and construct the multi-fidelity function parameterized by both number of training iterations and
our proposed curriculum-based task difficulty. Maximum allowed iteration number at fidelity 𝑧 for
BOCA is set to 500 + 1500𝑧 since most training finishes within 2000 iterations. Maximum allowed
simulation steps 𝑁𝑡𝑜𝑡𝑎𝑙 is set to 108. The optimization process takes about 18 hours for all methods.
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Length scale Range Radius scale Range

Torso [0.3, 2] Torso [0.5, 1.5]
Waist [0.3, 2] Waist [0.5, 1.5]
Pelvis [0.3, 2] Pelvis [0.5, 1.5]
Thigh [0.3, 2] Thigh [0.5, 1.5]
Knee [0.3, 2] Knee [0.5, 1.5]
Foot [0.3, 2] Foot [0.5, 1.5]
Table 1. Morphology hyperparameters.

(a) (b)

Fig. 4. (a):Results on morphology optimization. We compare best performance over the number of training
samples among CMFBO (Ours), GP-UCB, BOCA with number of iteration as fidelity and [Schaff et al.
2019]. (b): Ablation study on morphology optimization. We further compare our method with BOCA with
curriculum-based fidelity (BOCA+CL), and CMFBO without policy transfer (w/o transfer).
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Fig. 5. Visualization of morphology and gaits optimized by different methods.

4.1.4 Results. We plot the best performance over number of total simulation steps in figure 4a
for various methods. Note that for multi-fidelity methods, best performance is only recorded
when the original objective function is evaluated. Our method finds high-performing morphology
hyperparameters much faster than other methods. BOCA performs worse than single fidelity
method GP-UCB due to a misleading fidelity criterion defined as number of training iterations, as
explained in section 3.2. Figure 5 visualizes the best morphology and the associated gaits for each
method obtained from 3 individual runs. Our method learns morphology resembling human and
shows fast and stable gaits. We encourage readers to see supplementary videos for more details.
Note that though our method learns different morphology hyperparameters at different runs, proper
values of essential components key to stable locomotion are consistently learned, like thigh and
foot lengths.
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Parameters Range Default
Batch size [32,1024] 256

Policy updates
per iteration [1,10] 1

Learning rate
of actor network [2.5 × 10−6,2.5 × 10−4] 2.5 × 10−6

Learning rate
of critic network [1 × 10−4,1 × 10−2] 1 × 10−2

Weight decay [5 × 10−4,5 × 10−2] 5 × 10−4
PPO clip rate [0.02, 0.2] 0.2
Maximum of

the gradient norm [1, 100] 100

Table 2. Hyperparameters of DeepMimic

Figure 4b shows results of our ablation study, where we further compare our method against
BOCA with our proposed curriculum-based fidelity (BOCA + CL), and our method without policy
transfer (w/o transfer).With an effective fidelity criterion defined by curriculum-based task difficulty,
BOCA shows a large performance gain. However, our method still outperforms BOCA by a large
margin due to effective search space pruning through our progressive acquisition function. The
use of transfer learning further improves efficiency of our method, with a saving of roughly 2 × 107
samples before a high-performing set of hyperparameters is confirmed on the original fidelity.

4.2 DeepMimic Hyperparameter Optimization
DeepMimic is a recent DRL-based framework for diverse motor skill learning. Many recent physics-
based character animation systems are built on DeepMimic, such as [Bergamin et al. 2019; Luo
et al. 2020; Park et al. 2019; Won et al. 2020; Won and Lee 2019]. As far as we know, this is the
first work towards hyperparameter optimization for high-dimensional physics-based character
control systems. In our experiments, we focus on the optimization of DRL training hyperparameters
listed in table 2. The choices of these hyperparameters are critical for the learning performance
where none of our randomly sampled 5 hyperparameters lead to successful policy training. These
hyperparameters correlate with each other implicitly and are hard to be manually tuned. Some
recent works [Ma et al. 2021; Won and Lee 2019] therefore simply adopt the default DeepMimic
hyperparameters directly into their systems with minor modifications. We evaluate our method
on two motor skill learning tasks: walk and backflip. Our optimized hyperparameters improve
DeepMimic learning efficiency by a large margin. Hyperparameters optimized for walking can be
reused for other skills as well resulting in superior performance than original settings.

4.2.1 Curriculum and Multi-fidelity Objective. We construct our multi-fidelity function using a
time-based curriculum proposed in [Kostrikov 2018; Peng et al. 2018a]. Given the normalized task
difficulty scalar 𝑧, task difficulty is given by maximum episode length 𝑇 (𝑧) = 30 + 570𝑧, which
ranges from 1 to 20 seconds. Our multi-fidelity objective considers both policy performance and
sample efficiency, which is defined as:

𝑓 (𝑥, 𝑧) =
∑𝑡=𝑇 (𝑧)

𝑡=1 𝑟 (𝑠𝑡 , 𝑎𝑡 )
𝑇 (𝑧) 𝑒−(

𝑁𝑠𝑎𝑚𝑝𝑙𝑒

𝐶
) . (8)
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(a) Walk (b) Backflip

Fig. 6. DeepMimic hyperparameter optimization results. We compare best performance over the number of
training samples among CMFBO, GP-UCB and BOCA.

(a) Walk (b) Backflip

Fig. 7. Ablation studies on DeepMimic hyperparameter optimization.

𝑁𝑠𝑎𝑚𝑝𝑙𝑒 is the total number of samples consumed during training. Training is terminated when
normalized expected return reaches a threshold pre-defined in original DeepMimic, or the normal-
ized expected return does not increase for 500 iterations. 𝐶 is a scaling factor set to 107 and 2 × 107
for walk and backflip respectively, based on the scale of usual samples required by DeepMimic on
different tasks. Note that original DeepMimic has a fixed annealing-based schedule for maximum
episode length during training. This schedule can be too slow on easy tasks. We switch to an
adaptive schedule to avoid wasting samples. Starting from 1 second, episode length is increased by
0.5 seconds every iteration until it reaches 𝑇 (𝑧), as long as the current fail rate is below 20%.

4.2.2 Comparison. We compare our method against GP-UCB and BOCA in our experiments. For
BOCA based on number of iterations as its fidelity criterion, maximum iterations on each fidelity
𝑁 (𝑧) is set to 500 + 6500𝑧 and 500 + 11500𝑧 respectively for walk and backflip. We also show
comparison with BOCA using our curriculum-based fidelity in our ablation study. Maximum
allowed simulation steps 𝑁𝑡𝑜𝑡𝑎𝑙 is set to 5 × 107 for all methods. The optimization process takes
about 16 hours for all methods.

4.2.3 Results. As shown in figure 6, our method consistently outperforms other methods. CMFBO
find different hyperparameters with different random seeds, but the performance is consistently
good. Table 3 shows the best optimized hyperparameters, which are quite different from the default
ones listed in table 2. We select best hyperparameters optimized from each method and test their
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Parameters Walk Backflip
Batch size 172 48

Policy updates per iteration 8 10
Learning rate of actor network 1.68 × 10−5 4.6 × 10−5
Learning rate of critic network 2 × 10−3 0.01

Weight decay 5 × 10−4 5 × 10−4
PPO clip rate 0.18 0.02

Maximum of the gradient norm 47.36 12.30
Table 3. Optimized hyperparameters for walk and backflip.

policy learning efficiency based on 3 individual runs. Results are shown in figure 8. GP-UCB fails
to find hyperparameters with which policies could be learned successfully. Since DeepMimic is
computationally expensive, only few evaluations can be performed in such single fidelity methods.
BOCA performs better than GP-UCB and find hyperparameters as good as the default ones for
walk task. It also finds hyperparameters converging 1.7 times faster than default ones for backflip.
Comparing to GP-UCB and BOCA, our method finds high-performing hyperparameters highly
efficiently. Hyperparameters optimized by CMFBO requires 5 − 6 times less simulation steps than
default settings for successful policy learning. We note that by default DeepMimic takes about 8
and 16 hours respectively to train control policies until convergence for walk and backflip, while
our method can find high-performing hyperparameters within 8 and 13 hours respectively for
these tasks, even before the training of default DeepMimic finishes. We conduct the same set of
ablation studies as in morphology optimization shown in figure 7, where we compare CMFBO
against BOCA with curriculum-based fidelity and CMFBO without policy transfer. As expected,
each component is essential to achieve the impressive efficiency of CMFBO.
We show that hyperparameters optimized by CMFBO generalize to other tasks as well. Figure

9 illustrates the large performance gain of policy learning on run and cartwheel tasks using
hyperparameters optimized by CMFBO on walk comparing with DeepMimic default settings.

CMFBO can also give us insights on the sensitivity of each hyperparameter. After optimization,
the surrogate model shows small length scales along dimensions corresponding to policy updates
per iteration, learning rate of critic network and weight decay. This implies that the performance is
more sensitive to these hyperparameters within the given ranges.

We briefly analyze the computational cost distribution of CMFBO for DeepMimic hyperparameter
optimization. The optimization of acquisition function usually finishes within three minutes, which
is negligible comparing with the time required for DRL training. We summarize the number
of training samples consumed on different fidelity levels in table 4, which indicates that most
computational resources are allocated to low fidelity approximations. Easy tasks require less time
to train than difficult ones. For instance, in walk task of DeepMimic, training at the easiest and
the original difficulty level with our optimized hyperparameters take roughly 20 minutes and 80
minutes respectively.

5 CONCLUSIONS
This paper introduces the hyperparameter optimization problem in physics-based character ani-
mation. We present CMFBO, a novel multi-fidelity Bayesian optimization framework to achieve
efficient optimization. Motivated by curriculum learning, we propose the use of task difficulty as
an effective fidelity criterion, which enables relative performance of different hyperparameters to
be accurately estimated even with low-fidelity cheap approximations. We enable efficient search
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(a) Walk (b) Backflip

Fig. 8. Learning curves of policies trained with hyperparameters from CMFBO, DeepMimic default settings,
BOCA and GP-UCB.

(a) Run (b) Cartwheel

Fig. 9. Learning curves of policy learning for other tasks with hyperparameters optimized by CMFBO on
walk task comparing with DeepMimic default settings.

Walk Backflip

# of sampled hyperparameters 20 23
# of training samples on original tasks 6.1 × 106 1.23 × 107
# of training samples on low fidelities 4.39 × 107 3.77 × 107

Table 4. The distribution of training samples in CMFBO

space pruning through a progressive acquisition function focusing only on optimal regions. Trans-
fer learning is further adopted to reduce evaluation cost of function queries. Through extensive
experiments, we demonstrate that CMFBO is more efficient than state-of-the-art hyperparameter
optimization algorithms. In particular, we show that hyperparameters optimized through CMFBO
result in at least 5x performance gain comparing to original author-released settings in DeepMimic.
We believe that our method could serve as stepping-stone for automatic tuning of physics-based
character animation systems and free researchers or engineers from laborious and exhausting
tuning works.
There are several interesting future directions worth exploring. First, the search space grows

exponentially with the dimension of hyperparameters. We could incorporate some recent machine
learning and optimization techniques, like random embedding [Wang et al. 2013], to scale our
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method to even higher dimensions requiring much larger computation budgets, such as optimizing
the complex routing of muscles for full-body characters. Second, our current method is limited to
Euclidean search space. It would be interesting to extend our method to general Non-Euclidean
search space such as Riemannian manifolds in [Jaquier et al. 2020]. Last but not least, although
our method is demonstrated on simulated characters, it could possibly be extended to real-world
automatic robot design with the recent success of ’sim to real’ transfer learning [Tan et al. 2018; Yu
et al. 2019].
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